Hypoxic injury during neonatal development in murine brain: correlation between in vivo DTI findings and behavioral assessment.
نویسندگان
چکیده
Preterm birth results in significant neurodevelopmental disability. A neonatal rodent model of chronic sublethal hypoxia (CSH), which mimics effects of preterm birth, was used to characterize neurodevelopmental consequences of prolonged exposure to hypoxia using tissue anisotropy measurements from diffusion tensor imaging. Corpus callosum, cingulum, and fimbria of the hippocampus revealed subtle, yet significant, hypoxia-induced modifications during maturation (P15-P51). Anisotropy differences between control and CSH mice were greatest at older ages (>P40) in these regions. Neither somatosensory cortex nor caudate putamen revealed significant differences between control and CSH mice at any age. We assessed control and CSH mice using tests of general activity and cognition for behavioral correlates of morphological changes. Open-field task revealed greater locomotor activity in CSH mice early in maturation (P16-P18), whereas by adolescence (P40-P45) differences between control and CSH mice were insignificant. These results may be associated with lack of cortical and subcortical anisotropy differences between control and CSH mice. Spatial-delayed alternation and free-swim tasks in adulthood revealed lasting impairments for CSH mice in spatial memory and behavioral laterality. These differences may correlate with anisotropy decreases in hippocampal and callosal connectivities of CSH mice. Thus, CSH mice revealed developmental and behavioral deficits that are similar to those observed in low birth weight preterm infants.
منابع مشابه
Evaluation of the relationship between axon injury and clinical symptoms in patients with multiple sclerosis using diffusion tensor MRI imaging
Background: Magnetic resonance imaging (MRI) is a non-invasive imaging technology that shows detailed anatomical and pathological images. It is often used for disease detection, diagnosis, and treatment monitoring, in particular with neurodegenerative diseases, such as Multiple sclerosis (MS), Alzheimer's and amyotrophic lateral sclerosis. However, conventional MRI provides only qualitative inf...
متن کاملNeonatal neurobehavioral abnormalities and MRI brain injury in encephalopathic newborns treated with hypothermia.
BACKGROUND Neonatal Encephalopathy (NE) is a prominent cause of infant mortality and neurodevelopmental disability. Hypothermia is an effective neuroprotective therapy for newborns with encephalopathy. Post-hypothermia functional-anatomical correlation between neonatal neurobehavioral abnormalities and brain injury findings on MRI in encephalopathic newborns has not been previously described. ...
متن کاملMarine Compound Xyloketal B Reduces Neonatal Hypoxic-Ischemic Brain Injury
Neonatal hypoxic-ischemic encephalopathy causes neurodegeneration and brain injury, leading to sensorimotor dysfunction. Xyloketal B is a novel marine compound isolated from a mangrove fungus Xylaria species (no. 2508) with unique antioxidant effects. In this study, we investigated the effects and mechanism of xyloketal B on oxygen-glucose deprivation-induced neuronal cell death in mouse primar...
متن کاملDiffusion tensor imaging assesses white matter injury in neonates with hypoxic-ischemic encephalopathy
With improvements in care of at-risk neonates, more and more children survive. This makes it increasingly important to assess, soon after birth, the prognosis of children with hypoxic-ischemic encephalopathy. Computed tomography, ultrasound, and conventional magnetic resonance imaging are helpful to diagnose brain injury, but cannot quantify white matter damage. In this study, ten full-term inf...
متن کاملLate measures of microstructural alterations in severe neonatal hypoxic-ischemic encephalopathy by MR diffusion tensor imaging.
Neonatal hypoxic-ischemic encephalopathy is a major cause of brain damage in infants, and is associated with periventricular white matter injury and chronic neurological dysfunctions. However, the mechanisms of the chronic white matter injury and reorganization are still unclear. In this study, in vivo diffusion tensor imaging (DTI) was employed to evaluate the late changes of white matter micr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cerebral cortex
دوره 19 12 شماره
صفحات -
تاریخ انتشار 2009